
Influence of Plant Model Variants for the Automatic
Optimisation of Control Parameters

Patrick Bouillon and Jörg Frochte and Markus Lemmen
Dept. of Electrical Engineering and Computer Science

Hochschule Bochum
D 42579 Heiligenhaus, Germany

Email: joerg.frochte@hs-bochum.de

Abstract—Designing controllers in a model based engineering
environment has become more important in industrial applica-
tions. As the name already suggests, the model based design
process depends strongly on the plant model and its quality as
well as on the accuracy of the corresponding model parameters,
which sometimes are estimated or even just guessed. The goal of
this paper is to investigate the automation potentials of the model
based design process, concretely in this paper the parametrization
of two given cascaded controllers for a plant, which might
vary over time or due to certain events. Transferring controller
parametrization to a computer which is in contrast to a human
engineer not sensible of the real life use cases, makes the plant
model even more important. In this work we want to underline
this point by a case study and provide some insights into the
possibilities and limitations of automated parametrization of
controllers during a model based design process for two cascaded
controllers.

I. INTRODUCTION

The underlying concept of this paper is to design a workflow
such that the model based automated controller parameter
fitting supports changes in the considered plant of a closed
loop system. The envisaged workflow is illustrated in fig. 1.
The following root causes are probably the reasons for changes

Fig. 1: Model based design with automatic optimisation

in the behavior of the plant: the plant might alter its behavior
over time (ageing, different loads to be transported, different

operating points etc.) or due to certain impacts F(e.g. high
stresses causing deformations in bearings). Another reason
why automated parameter fitting is desired is that the controller
can be used for e.g. different product variants (e.g. station
wagons instead of sedan cars etc.) with identical controller
setups.

Whatever actual plant has been used in the model based
design of the controller, the controller(s) and its parameters are
quite often tested within HIL-testbeds prior to real life testing,
e.g. within the V-process for mechatronic and automotive
products.

In this paper we focus on the sensitivity of the (non-
linear) plant model and the consequences and impacts of
plant variations for a (semi-) automatic optimisation of the
linear controller parameters within a fixed cascaded controller
structure in the model based design environment. Most control
engineers prefer to work with linear plant models due to
their simplicity and well understood theoretical framework.
An experienced control engineer can take uncertainties and
inaccurate plant behavior into account by adequate adaption
of the initially linearized designed controller. For a machine
doing the parameter fitting of the controller(s) by optimisation
techniques, it is assumed that this linearized design would
lead to a very suboptimal solution. Hence, the hypothesis is
twofold: On the one hand, it is hypothesized that such an
automated process requires more detailed and accurate models
and on the other hand, the process enables the reduction
or even elimination of the hand fitting of the controller
parameters, if they are transferred to the real life problem set.

Regarding the optimisation one may choose from a wide
range of methods. One possible choice is the use of traditional
numerical optimisation methods, e.g. Newton-like approaches
[1], gradient descent, etc. or techniques from machine learning
like reinforcement learning or data mining techniques to
support the users [2].

For the case being studied here, we will consider traditional
numerical optimisation methods and a plant model, in which
we discuss the effect of different common friction models and
their effects on the optimisation results. A friction model is a
suitable model aspect to consider, since it is one of the first
aspects modelers tend to eliminate or at least to simplify—and
friction usually changes over life and accordingly operation
time.

Thus, the paper is organized as follows: In section II we
give a description of the studied test case. Different ways
to model the investigated problem in particular regarding the
friction as an important part of a nonlinear plant are presented
in III. The controller layout is included in this section as well.
Section IV deals with the mathematical optimisation of the
linear controller parameters for nonlinear plant with varying
behavior within the closed loop control system. We present the
results of our investigation in section V and draw conclusions
in section VI.

ϕ

x1 x2x4x3

L

DF E

Fig. 2: Problem set

II. APPLICATION EXAMPLE FOR THE CASE STUDY

Fig. 2 depicts the problem set of the the application example
used as case study: A crane trolley is at position x. The
shaft is deflected by an angle ϕ. The control task of the
crane trolley is to move to a given list of positions xi and
stop at each of them within a certain accuracy. The list of
positions should be reached in the order of their indeces, so
first x1, second x2 etc. While moving to a position xi, the
angular deflection ϕ is supposed to be kept within a certain
bound. The behavior of the crane trolley and its load can be
controlled by applying a couple of standard controllers from
linear control theory. One common approach for this kind of
problems is a cascaded controller design for angle deflection
and crane trolley position. Hence, the resulting controller
scheme is a cascade of two linear standard controllers. Once
the linear controller type is chosen, the controller parameters
have become fixed according to the given design targets for
the closed loop control system: the bounds for the deflection
angle and positional accuracy in combination with additional
measures for the transient controlled behavior of the complete
system. Thus, the design task for the controls is split into two
parts: First, the choice of the control structure and controller
type and second, the optimisation of the controller parameters
in order to stay within the given targets for the closed loop
controlled system.

In section III-A we have fixed the structure of the controller
as well as the type of the linear controllers. For the controller
cascade remain eight parameters to be optimized.

The control task can be interpreted as a sequence of
positioning tasks of the crane trolley. For each task the trolley
starts at a given position x and has to move to position xi.

In this context reaching the position xi is defined as staying
around position xi and having almost zero velocity |ẋ|, all
tolerances εx, εv . Thus, we consider a target point xi to be
successfully reached, if

|x− xi| < εx and |ẋ| < εv .

In this case study we use εx = 10−2 m and εv = 10−4 m s−1

as absolute tolerances.

Con-
troller

Motor
Model

Crane Trolley
Model

x

ϕ
Forceu

-

-

Plant Model

Ref: xi · Pf

Ref. ϕ = 0

Feedback

ex

eϕ

Fig. 3: Block model of the simulation

III. CRANE TROLLEY - MODELS AND CONTROLLERS

Fig. 3 shows a high level block diagram of the system used
for our study. This kind of modular design enables the engineer
to build different variants of the model simply by exchanging
different parts or components of the plant model. For this paper
we provide three Crane Trolley Models that differ regarding
the friction model. More details of the used model are given
in section III-B3.

In fig. 3 we make use of the following conventions:
• u ∈ [−1, 1] ⊂ R can be interpreted as a pulse-width

modulation (PWM) signal and is a real valued scalar
between -1 and 1. A value of 1 means full power forward,
-1 backward and 0 no power.

• Pf in fig. 3 is a scalar, which corrects the changing closed
loop systems gain during the optimisation process of the
controller parameters. More details are given in section
III-A.

• x is the position of the trolley.
• ϕ is the deflection angle of the crane trolley shaft or of

a hoist rope, respectively.
For our study the reference value for ϕ is zero and the
reference value for the position x is the position xi from the
list of target positions.

A. Controller Scheme

Controlling a cran trolley is technically similar to control-
ling an inverted pendulum, where different approaches from
the literature are known (see e.g. [3], [4]). We decided for
our study to follow a common and well established linear
controller choice in a cascaded structure on the one hand for

KRpos/TIRpos

KRpos · TDRpos

KRpos

1
s

du
dt

1/(T1Rpos) 1
s

uex-Outϕ
+
+

+

−

Fig. 5: Position controller layout from the subsystems

ex

eϕ

∑

ϕ-Controller

x-Controller u
+

−

Fig. 4: Top-level controller scheme

position and on the other hand for the deflection angle. The
scheme of the cascade control is shown in fig. 4. The cascade
consists of an inner and an outer control loop. In a cascaded
control structure, usually the inner loop is supposed to be the
faster loop, while the outer loop may (slightly) lag compared
to the inner one. The inner controller calculates an valuefor the
actuator such that the input difference of the inner controller
vanishes. The output of the inner controller is the actuator
input—in our case this is the motor input, i.e. basically a
PWM duty cycle ratio. The outer loop varies the input of the
controller of the inner loop in order to achieve a change of the
actuator variable of the plant and to decrease its outer control
loop error, as well.

In our application study we assume the position of the
trolley to be prioritized over the deflection angle. Thus,
we choose the x-controller for the inner control loop and
the ϕ-controller for the outer. As controller type we use a
standard linear PIDT1-system as x-controller (c.f. fig. 5) and
a standard linear PDT1-system as ϕ-controller (c.f. fig. 6).
In addition to the PIDT1-system as x-controller, we add a
linear gain prefilter Pf (c.f. Fig. 3), since we have to take
into account that generally speaking the closed loop system
may have a different overall static gain compared to the
plant model and that the closed loop controlled system may
vary depending on the choice of the actual parameters of
the controller undergoing the later optimisation. Hence, we
utilize the prefilter Pf,ideal = 1/Kcl to compensate for varying
static gains of the closed loop system Kcl. This static gain
can be determined by the limit value of the step response
Kcl = limt→∞ h(t) or from the closed loop transfer function
Kcl = G(s)|s=0 for proportional-type linear systems. Please
note, that the actual value of the prefilter gain Pf will be
calculated during the optimisation and will not be obtained
by measuring or estimating the overall closed loop gain Kcl.

Please note further, that Pf does vary strongly depending on
the operating point of the plant, since the plant in our case
is usually nonlinear, while the optimized controllers are linear
systems—and due to the plants nonlinear behavior, also Kcl
will vary and is strongly depending on the actual operating
point of the plant, which is unknown to the optimisation
procedure.

Therefore, we now have fixed the controller type and
structure but leave the controller parameters of each controller
open for automatic optimisation. Consequentially, we have 8
degrees of freedom for optimisation, the 8 controller parame-
ters KRpos, TIRpos, TDRpos, T1Rpos for the x−controller
and KRϕ, TDRϕ, T1Rϕ for the ϕ-controller as well as and
Pf . Coherently, the optimisation task is to find a controller
parameter vector

cc = [KRpos, T IRpos, TDRpos, . . .
T1Rpos,KRϕ, TDRϕ, T1Rϕ, Pf] ∈ R8

resulting in a better, maybe even optimal behavior of the closed
loop controlled system. The properties of the plant model to
be controlled are discussed in the following section III-B.

B. Plant Models

As depicted in fig. 3, the plant model consists of a motor and
a crane trolley model. The crane trolley model is compound of
a mechanical model of the crane itself and the friction models
for the two motions: the angular motion of the rotatinal shaft
and the linear motion of the translational movement of the
crane trolley as well. In the next sections, we study three
different friction variations for the linear motion and two for
the angular motion.

1) Motor Model: While the controller provides an output
u ∈ [−1, 1] as actuator variable, this signal is transformed by
the motor model into a force. This force F is used as the
single input in the crane trolley model (see fig. 2).

The used motor model represents a direct current motor
with permanent magnets as stator. The dynamic behavior can
be approximated as

L

K1
Ṁ(t) +

R

K1
M(t) = u(t)− K2

rp
ẋ(t) ; (1)

with the inductance of the rotor La, the resistance of the rotor
Ra, the torque constant K1 , the electromotive force constant
K2, the radius of the pulley rp and the resulting motor torque
M . The rotor voltage U is modelled as U(t) = û · u and

KRϕ· TDRϕ

KRϕ

du
dt

1/(T1Rϕ) 1
s

Outϕ

eϕ

+
+

−

Fig. 6: ϕ controller layout from the subsystems

limited by the max. motor voltage û. With the radius of the
pulley rp we calculate the force F = M(t)

rp
.

2) Crane Trolley Model: For the simulation of the plant
we need to derive the equations of motion of the trolley and
the shaft. In order to support an easy exchange of the friction
models, we model the plant using Newton mechanics instead
of the usually used Lagrange mechanics for the model.

F

D

M

P

x

Sy

Sx E
ÿL

ẍL

ϕ

l

P

mg

mm

Sy
Sx

E

Fig. 7: Force and moment balances of trolley and shaft

First, we balance the forces and moments according to the
sketch in fig. 7

Mẍ = −Sx + F −D, (2)
mẍL = Sx, (3)
mÿL = −mg + Sy, (4)

where M is the mass of the trolley, m the mass of the shaft,
F the force provided from the motor, D the friction of the
trolley and E the friction moment of the shaft.

The shaft motion xL can be calculated from the motion x by

xL = x+ l sin(ϕ) (5)

⇒ ẍL = ẍ− ϕ̇2l sin(ϕ) + ϕ̈l cos(ϕ) (6)

accordingly, we deduce in yL-direction

yL = l − l cos(ϕ) (7)

⇒ ÿL = ϕ̇2l cos(ϕ) + ϕ̈l sin(ϕ) (8)

Equations (2), (3) in (6) yields the differential equation of the
trolley motion:

(M +m)ẍ = ϕ̇2ml sin(ϕ)− ϕ̈ml cos(ϕ) + F −D. (9)

P

r

ρ

Sy

Sx
L = 2l

l

mg

ϕ

A

Fig. 8: Homogeneous shaft

The torque balance around the shaft axis using (3) and (4) is
described by

θSϕ̈ = −Sxl cos(ϕ)− Syl sin(ϕ)− E,
θSϕ̈ = −mẍLl cos(ϕ)−mÿLl sin(ϕ)−mgl sin(ϕ)− E.

Using (6) and (8) to eliminate ẍL and ÿL leads to the
differential equation of the shaft(

θS +ml2
)
ϕ̈ = −ẍml cos(ϕ)−mgl sin(ϕ)− E (10)

The moment of inertia θS is calculated for a homogeneous
shaft (see Fig. 8) with the cross-sectionial area A, the overall
length L and the distance between axis and the center of mass
l. As the shaft is homogeneous and A is constant, we have
the relation of l and L as follows:

L = 2l (11)

The moment of inertia θS to the center of mass is

θS =

∫
V

(~r⊥)
2
ρ(~r)dV =

∫ l

−l
r2ρAdr = ρA

∫ l

−l
r2dr

θS =
2

3
ρAl3 =

2

3
ρA

(
L

2

)3

=
1

12
ρAL3 (12)

With the mass of the shaft m = ρAL = 2ρAl where A and
ρ are constant with respect to r, we get for the moment of
inertia

θS =
1

12
mL2 =

1

3
ml2 (13)

3) Friction model of the crane trolley: The friction of the
trolley D(ẋ) is generally described by

D(ẋ) = FNT · h(ẋ)

with the normal force FNT of the trolley and the velocity-
dependent friction coefficient h(ẋ).

In total we distinguish between the three following different
friction models for the crane trolley, where a) is the most
elaborate model, b) is a simplified one and c) is a friction-free
model.
a) In the most detailed model, also known as Stribeck friction

model, we assume a friction decrease with increasing
velocity for a certain velocity region near standstill, while
we observe an increase in friction with speed for higher
velocities (c.f. Fig. 9). Therefore the model reflects static

−0.2 −0.1 0 0.1 0.2
−0.4

−0.2

0

0.2

0.4

ẋ [m s−1]

h
(ẋ

)

Fig. 9: Coefficient for stribeck model friction

friction as well as a speed dependent dynamic friction
which is shown in Fig. 9 and is also referred to as
linear viscous damping. Thus, this friction model is a
superposition of an exponential and a linear function which
changes its coefficient at a certain velocity. The friction
coefficient h(ẋ) is modelled for α > β as

h(ẋ) =µs sgn(ẋ) exp

(
− |ẋ|
Tm

)
+

{
αẋ ; if ∼A OR ∼B

βẋ+ γ ; if A AND B

with the conditions A and B as

A := |µs sgn(ẋ) exp

(
− |ẋ|
Tm

)
| < |αẋ|

B := Crr <

∣∣∣∣µs sgn(ẋ) exp

(
− |ẋ|
Tm

)
+ αẋ

∣∣∣∣
and
• Static friction coefficient µs ≈ 0.27 (Steel on Steel)
• Coefficient Crr ≈ 0.28 (where Crr can be interpreted

similar to the rolling resistance of hardened steel ball
bearings on steel)

• Here, we use α = 3.8, β = 0.32, Tm = 0.01 which lead
to γ = 0.2563.

The calculation of the static friction at standstill is obtained
with the maximum static force Fs by

Fs = (m+M) · g · µs
at standstill.

−0.2 −0.1 0 0.1 0.2
−0.4

−0.2

0

0.2

0.4

ẋ [m s−1]

h
(ẋ

)

Fig. 10: Simplified friction model coefficient h(ẋ)

b) Model b) is a simplified friction model of the elaborate type
model a) for the crane trolley. In this model the friction
coefficient depends linearly on the speed ẋ of the trolley.
It is defined as

h(ẋ) = ẋβ + 0.2563,

which is depicted in Fig. 10. Therefore, in model type b)
the crane trolley friction is basically modelled as a combi-
nation of Coulomb friction and linear viscous damping.

c) The last model is the negation/omission of friction. Hence,
so there is no friction at all modelled. That implies a
friction coefficient

h(ẋ) = 0.

In general, the discontinuity at zero velocity in the first two
model variations yields difficulties for the simulation, which
already have been issued in some publications, e.g. [5] and [6,
chapter 9].

4) Friction Model of the shaft: The friction model for the
shaft must be chosen accordingly to the friction model for the
trolley from the following two variants:
• With no friction at the trolley, there is also no friction at

the shaft.
• In case of modelled trolley friction a) or b), we assume for

the rotation a friction moment E as a Coulomb friction.
The friction moment with proper orientation is described
as

E = FNSµbrb ·
200ϕ̇

π
(14)

with the radius of the bearings rb, the specific friction
coefficient µb and the normal force of the shaft FNS .
For the normal force, we consider both the weight force
and the centripetal force, when the shaft is in motion.
Hence, we obtain the following highly nonlinear normal
force multiplier for the shaft friction

FNS = mlϕ̇2 +mg cos(ϕ). (15)

IV. MATHEMATICAL OPTIMIZATION

A. Optimization Function

In order to enable (semi-)automatic optimisation we simu-
late the complete closed loop controlled model for an actual
set of control parameters cc

[IITAE , ϕ, x, tend] = simulation(cc).

The return values of the simulation are used to evaluate
the performance of the control task. Among other control
performance evaluation criteria the ITAE criterion

IITAE =

∫ tend

0

‖error‖2 · t dt with

error =

(
x(t)− xi
ϕ(t)− 0

)
is used. The choice for this criterion is driven by the fact that
weighting over time t is used. The weighting should compen-
sate for the initial error, which is always large. Secondly, this
choice rewards fast controllers one would prefer for this task,
as well.

The upper limit for the simulation time to reach the three
points of the list of target positions is set to 10 seconds.
For each control parameter set we require reaching the target
within this time and as well e(t) = 0 for t > tend.
Consequently, we stop the integration of the ITAE performance
criteria at that point in time.

From the optimisation problem’s point of view we want to
find the minimum of a function:

f :
R8 → R+

x 7→ w1I
x
ITAE + w2tend + w3I

ϕ
ITAE + w4 max

0<t≤tend
|ϕ|

The choice of the weights wi depend on the requirements
of the task. Weights w1 and w2 are associated with the
requirements for the task to reach the target position points
as fast as possible, while w3 and w4 refer to the bounds of
the angular deflections of the shaft during the control motions.
Additionally, these weights are used for normalization pur-
poses. We perform our test with w1 = w2 = 0.1, w3 = 1

10π ,
w4 = 2

π .

B. Evaluation of Optimization Techniques

When it comes to applying common techniques from opti-
misation to our problem we have to keep in mind that each
function call of f means a simulation. Thus, each function call
requires significantly more time than a usual common call on
a problem set given by some algebraic equations. Therefore,
the goal is to use a technique that leads to fast convergence
with as less as possible function calls for f .

If we consider second order newton-like methods, see. e.g.
[1], or first order gradient descent approaches, see e.g. [7],
most function calls occur, while building the gradients or the
Hesse matrix.

Let us consider a function f : Rn → R. With

ai = f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)

and
bi = f(x1, . . . , xi−1, xi − h, xi+1, . . . , xn).

Thus, we achieve
∂f

∂xi
f(~x) ≈ ai − bi

2h

To minimize the calculation time for the function calls, one
can re-use these values ai und bi again in order to calculate
the second order partial derivatives. Additionally, one has to
compute

c = f(x1, . . . , xi−1, xi, xi+1, . . . , xn)

∂2f

∂x2i
f(~x) ≈ ai − 2c+ bi

h2

In addition, we have the mixed derivatives:

dij = f(x1, . . . , xi−1, xi+h, xi+1, . . . , xj−1, xj+h, xj+1, . . . , xn)

eij = f(x1, . . . , xi−1, xi−h, xi+1, . . . , xj−1, xj−h, xj+1, . . . , xn)

∂2f

∂xixj
f(~x) ≈ dij − ai − aj + 2c− bi − bj + eij

2h2

For n = 8 this results in 28 simulation calls for d and 28 for
e, provided the assumption we may assume that this Hesse
matrix will fulfill the symmetry of second derivatives.

Consequently, computing the gradient and Hesse Matrix
results in 73 function calls.

73 = 1︸︷︷︸
c

+ 8︸︷︷︸
ai

+ 8︸︷︷︸
bi

+ 28︸︷︷︸
dij

+ 28︸︷︷︸
eij

In contrast to this method the first order approach using the
gradient requires 16 function calls. Therefore, the choice of
the optimisation technique has a most significant influence on
the computation costs and simulation time required.

Assuming that a simulation is being calculated five times
faster than real time, a single simulation may take 2 seconds
for our given example as worst case. Thus, a newton approach
would result in calculation times of 146 seconds, while a
gradient method would be calculated within 32 seconds.

Please note, that these function calls are completely inde-
pendent from each other and thus can be straight forward
parallelized in computation.

Today, a quad-core processor is standard state-of-the-art,
while for workstations an octa-core is often used. Therefore,
we can perform—in our case using the MATLAB Parallel
Toolbox on a workstation—a gradient being calculated in
about 4 sec. and a Hesse matrix built in about 19 seconds.

Another approach, which also is not dependent on a cal-
culation of derivatives is commonly known as hill climbing
methods, see e.g. [8]. These methods can be used to find
an extremum by starting with an initial guess of the solution
and then sampling local area around the solution by changing
the current solution slightly in order to find in our case a
f(xnew) < f(xcurrent). The computation costs per step de-
pend on how many samples are needed before an update may
be performed. Again, one should use the parallel architectures

in today’s workstations because the samples to calculate an
optimisation direction do not depend on each other. For our
study, we use the following adapted version of a hill climbing
method for our problem set:

Algorithm 1 Parallel Cartesian/Stochastic Hill Descent
Require: xstart, ∆x[], h[], m

1: xnew := xstart
2: compute f(xstart) by simulation
3: repeat
4: xold = xnew
5: for all ∆x[] do
6: parallel pick 2 · 8 samples with distance ∆x[j] from

xold in the direction of the Cartesian coordinate j
7: add samples to sample list S
8: end for
9: for i = 1 to m (parallel) do

10: for all h[] do
11: change = compute random vector r with

r(i) ∈ [−0.5, 0.5]
12: compute r := r · xold · h[j]
13: pick sample f(xnew + change)
14: add samples to sample list S
15: end for
16: end for
17: selected sample xnew = argminx̃∈S f(x̃)
18: until |f(xnew)| < |f(xold)|
19: return xnew

In our tests it turned out that the second order Newton-
like approach is not reasonable concerning the computational
cost. Therefore, we tested the plant models with the gradient
descent method and an adapted version of the Hill climbing
method given in algorithm 1.

The function f seems to have many local minima, in which
especially the gradient descent method tends to be stuck.
Thus, we include a local minimum check before the gradient
descent method finishes: Prior to finishing the algorithm in
each Cartesian direction a sample check is performed, if there
is a better solution available than the actual one. In case a
better solution is found, the gradient descent starts again from
this improved starting point.

V. RESULTS

We parametrized our plant model based on an educational
experimental bench in our controls education lab. Coherently,
we use the values given in table I for the crane trolley and the
values in table II for the motor model.

TABLE I: Trolley characteristics

trolley mass 0.36 kg
shaft mass 0.16 kg
shaft length 0.3 m
friction coefficient µs 0.1

As already discussed in section IV-B, each of the
optimisation methods needs a starting vector. Its choice

TABLE II: Motor characteristics

rotor inductance L 1 mH
rotor resistance R 2 Ω
torque constant K1 0.02 N m A−1

electromotive constant K2 0.02 N m A−1

Maximum Voltage û 12 V
pulley radius rp 0.005 m

strongly influences the convergence speed and sometimes
even the stability. Depending on that starting vector in
combination with the randomized vector r at line 11 of
Alg. 1, the computation time for the optimisation differs
between a few minutes and up to three hours for our study.
Of course, the chosen numerical method influences the results
regarding performance and accuracy. A null vector as initial
guess makes no sense considering the discussed controller
layout—e.g. this would result in no control activity at all or
one would divide by zero etc. Thus, a reasonable initial guess
to start the computation is e.g.

cc = [1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 1] .

Both test cases we used require from the trolley to move
1.3 m. Table III shows the results for a quite homogeneous
use case where Pf can be set nearly optimal, while IV shows
the results for a use case, where the distances between the way
points tend to differ more.

The values seem similar at first sight. However, one has to
keep in mind that small changes might cause very different
behaviors. Therefore, fig. 11 and fig. 12 show the big differ-
ences in the transient behavior, when using the hill climbing
parameter set

ĉc = [1.0419, 1.2771, 0.1602, 0.0069,

0.2083, 0.0946, 0.0453, 0.9947]

from table IV of the non-friction model for the other two
friction models. Both models suffer due to the additional

Time [s]
0 1 2 3 4 5 6 7 8 9 10

P
os

it
io

n
x

[m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Friction Model a)
Friction Model b)
Friction Model c)

Fig. 11: x for different friction models with ĉc

friction. In case of friction model b), one of the position

TABLE III: Calculated parameters for the way-points [0.4, 0.8, 0.3]

Model Methods KRpos TIRpos TDRpos T1Rpos KRϕ TDRϕ T1Rϕ Pf Time Required
Stribeck friction gradient descent 1.3544 0.8222 0.2019 0.0072 0.1317 0.1198 0.0223 0.9459 5.2997
& Shaft friction Hill climbing 1.3542 0.7304 0.1991 0.0403 0.1238 0.1183 0.0295 0.9603 5.7528
Linear friction gradient descent 1.3410 1.1865 0.1225 0.0623 0.1780 0.1091 0.0849 0.9833 5.8738
& Shaft friction Hill Climbing 1.3418 1.1860 0.1229 0.0627 0.1763 0.1088 0.0954 0.9879 5.8722
No Trolley Friction Gradient Descent 0.9966 1.0020 0.1301 0.0914 0.1691 0.1018 0.0795 0.9850 6.2771
& No Shaft friction Hill Climbing 1.0419 1.2771 0.1602 0.0069 0.2083 0.0946 0.0453 0.9947 5.5890

TABLE IV: Calculated parameters for the way-points [0.7, 0.3, 0.5]

Model Methods KRpos TIRpos TDRpos T1Rpos KRϕ TDRϕ T1Rϕ Pf Time Required
Stribeck friction gradient descent 1.3393 0.9046 0.2049 0.0406 0.1347 0.1233 0.0310 0.9790 5.7488
& Shaft friction Hill climbing 1.3408 0.9047 0.2050 0.0421 0.1330 0.1240 0.0292 0.9818 5.7554
Linear friction gradient descent 1.3277 1.2237 0.1698 0.0048 0.2148 0.1068 0.0977 0.9763 6.9054
& Shaft friction Hill climbing 1.3304 1.2208 0.1648 0.0080 0.1988 0.1100 0.0950 0.9896 5.7178
No trolley friction gradient descent 0.9940 1.0147 0.1445 0.0737 0.1911 0.1026 0.0605 0.9818 6.1760
& No Shaft friction Hill climbing 1.0306 1.2758 0.1603 0.0019 0.2248 0.0841 0.0571 1.0079 5.7739

Time [s]
0 1 2 3 4 5 6 7 8 9 10

S
h
af

t
A

n
gl

e
'

[r
ad

]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5 Friction Model a)
Friction Model b)
Friction Model c)

Fig. 12: ϕ(t) for different friction models with ĉc

targets is met, while none at all is met with model a). Fig. 12
illustrates the benefit of the shaft friction regarding controlling
ϕ. An examination of the two benchmark values tend and ϕmax

in table IV and III shows, that both criteria are taken into
account. In case weights w3 = w4 = 0 are chosen, the result
would be some rollover of the shaft. In contrast, a choice of
w1 = w2 = 0 or just some too small numbers, might result in
a controller setting that does not lead to any motion at all.

VI. CONCLUSION

In this paper, we propose an approach for a (semi-) auto-
matic fitting of the parameters of linear cascaded controllers
for varying nonlinear plants and evaluate different optimisation
techniques for this purpose. For the investigated problem,
gradient descendent and an adapted hill climbing variant have
been used. Both methods result in well-working parameter
sets. It is shown that quite detailed plant models are required,
since otherwise the computer tends to compute suboptimal
solutions.

Future work is needed to extend the verification to more
general problems and different controller layouts. Beyond
the results presented here, further development is required.

Indeed, the combination of a hill climbing approach with
some machine learning for the optimisation of picking samples
might lead to higher robustness and performances for the
optimisation. Alternatively, one could use the trajectory of x
and phi as a feature for parameter changes based on machine
learning. To automatically choose proper start values Data
Mining in the sense of [2], [9] or [10] seems to be a promising
starting point for further developments as well.

ACKNOWLEDGMENT

The authors would like to thank J. Weber from the controls
and automotive systems research lab for providing measure-
ment results on a crane trolley for the Stribeck friction fitting.

REFERENCES

[1] P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invari-
ance and Adaptive Algorithms, ser. Springer Series in Computational
Mathematics. Springer, 2004. 1, 6

[2] S. Burrows, B. Stein, J. Frochte, D. Wiesner, and K. Müller, “Simulation
data mining for supporting bridge design,” in Proceedings of the 9th
Australasian Data Mining Conference, CRPIT, vol. 121, 2011, pp. 163–
170. 1, 8

[3] O. Föllinger, Regelungstechnik: Einführung in die Methoden und ihre
Anwendung. VDE, 2008. 2

[4] R. C. Dorf and R. Bishop, Modern Control Systems. Pearson Education,
2011. 2

[5] M. Otter, H. Elmqvist, and S. E. Mattsson, “Hybrid modeling in
modelica based on the synchronous data flow principle,” in Computer
Aided Control System Design, 1999. Proceedings of the 1999 IEEE
International Symposium on. IEEE, 1999, pp. 151–157. 5

[6] F. E. Cellier and E. Kofman, Continuous system simulation. Springer
New York, 2006, vol. 1. 5

[7] S. Koziel and X. Yang, Computational Optimization, Methods and
Algorithms, ser. Studies in Computational Intelligence. Springer, 2011.
6

[8] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall, 2010. 6

[9] I. Bernst, P. Bouillon, J. Frochte, and C. Kaufmann, “An approach
for load balancing for simulation in heterogeneous distributed systems
using simulation data mining,” in Proceedings of the 11th International
Conference Applied Computing 2014, H. Weghorn, Ed. Porto, Portugal:
IADIS, 2014, pp. 254–258. 8

[10] S. Burrows, J. Frochte, M. Völske, A. B. Martnez Torres, and B. Stein,
“Learning overlap optimization for domain decomposition methods,” in
Advances in Knowledge Discovery and Data Mining, ser. Lecture Notes
in Computer Science, J. Pei, V. Tseng, L. Cao, H. Motoda, and G. Xu,
Eds. Springer Berlin Heidelberg, 2013, vol. 7818, pp. 438–449. 8

	Introduction
	Application example for the case study
	Crane Trolley - Models and Controllers
	Controller Scheme
	Plant Models
	Motor Model
	Crane Trolley Model
	Friction model of the crane trolley
	Friction Model of the shaft

	Mathematical Optimization
	Optimization Function
	Evaluation of Optimization Techniques

	Results
	Conclusion
	References

