
Simulation- and Web-Based E-Learning
in Engineering

- Open Source Architecture and Didactic Issues -
Patrick Bouillon and Jörg Frochte

Dept. of Electrical Engineering and Computer Science
Hochschule Bochum

D-42579 Heiligenhaus, Germany
Email: joerg.frochte@hs-bochum.de

Abstract—The relevance of simulation based software has in-
creased for the academic education of engineers. In this article we
consider didactic issues and an open source software architecture
to address these issues. The sketched software and teaching
approach provides the design and prototype implementation
of a learning environment to support teaching in engineering
education. A software architecture that combines Java Remote
Application Platform, OpenModelica and a database connection
is presented to support differentiated instruction.

I. INTRODUCTION

E-Learning, in at least one of its various varieties, tends
to become very common in todays university life. The ap-
proaches, which are in vogue, are mainly used toward orga-
nization and automation of the education processes, e.g. the
software Moodle or filmed lectures. Approaches similar to the
one we discuss are e.g. mentioned as “interactive knowledge
objects” by Grigorov et al. (2012) [1]. They are based on
simulation and much less common.

During the past decades simulation based software has
increased their relevance for the education of engineers. Con-
sidering engineering education we need to take a closer look
at the different challenges simulation software has to meet.
We consider three different cases:

1) Teaching math to engineering students
2) Teaching simulation and/or modeling to engineering stu-

dents
3) Teaching basics engineering courses, like electrical engi-

neering or engineering mechanics

Considering the first use case there are some tools like
Mathematica, Wolfram Alpha, MAXIMA, Maple etc. that have
the potential to provide some benefits for the course. For
these tools the amount of time the students need to spend
learning the necessary aspects of the tool mostly keeps up
with the benefit the tool provides for the course work. For
the second case the study of simulation tools and languages
is essential and part of the course work. So, if it comes
to simulation and modeling or system analysis tools like
MATLAB, OpenModelica, Scilab etc. are natural choices,
because these are the tools the specific field deals with.

The list of possible tools grows thin, if we consider use
case three. There are examples for simulation based tools like
FluidSim, see e.g. [2] or [3], that—together with the Festo
hardware—provide a lot of benefits in an education laboratory.
Next to these very special teaching simulation products there
is a huge amount of tools made for simulation that can be used
for teaching as well like the already mentioned OpenModelica.
But none of these tools really meet the challenge that comes
up for the use case three. What makes a general technical
course so different from the two other use cases?

The goal in a course, e.g. in engineering mechanics, is not
to learn a simulation tool, but to learn to solve mechanical
problems. The time to teach this is in general narrowly limited,
so the use of a simulation tool tends to cause problems
teaching the primary subject matter rather than solving them.
Some students focus on the simulation tool itself and neglect
the main topic, others are discouraged by additional demands
and may give up. For example, it takes a lot of time of a
course about simulation and modeling to teach the students
Modelica as a modeling language and some of the numerical
and symbolical background, so they understand the reaction
and limitations of the tool they use. After this course the
students will not be become very proficient in the use of
the simulation tool and will spend some attention during a
nonstandard task on the tooling itself. Because of this offset in
the work load, simulation tools—especially in the fundamental
courses—are seldom used.

Recent advances in web technologies and the increasing av-
erage rate of transmission in the internet made other products
possible like Wolfram Alpha with which it is possible to use
most of the functionality of Mathematica and beyond this in
the sense of Software as a Service (SaaS) cloud architecture,
see Borko, F. and Armando, E. (2010), chapter 1 [4].

Beyond all of these three use cases mentioned above one
has to distinguish whether we talk about classical classroom
teaching or distant learning. Distant learning situations benefit
more from new technologies, see e.g. Galligan, L., Hobohm,
C., & Loch, B. (2012) [5], than classical classroom teaching.
Somewhere in between are concepts like inverted or flipped
classroom teaching, see e.g. Abeysekera, L., & Dawson,



P. (2014) [6], or discretionary learning. For these types of
studying a teaching laboratory that requires presence at a given
place at given opening hours is a problem of high priority.

The remainder of this paper is divided into three sections.
In the next section we want to discuss and sum-up the
requirements for a software solution that meets the chal-
lenges mentioned above. Additionally, we give an overview
of existing active software solutions that come close to these
requirements. In the third section we introduce a software
architecture and a prototype that meets the requirements from
section two and then, in the last section, we finish with the
conclusions and some future prospects.

II. REQUIREMENTS ANALYSIS AND RELATED WORK

We start our requirements analysis with the teaching use
cases and finish this section with the technical requirements
that limit the solution space.

A general requirement is that in general open source soft-
ware is preferred, so that the educational institutions can
control the development and limit the costs for the software.
Second choice would be a free-to-use product for academic
teaching purpose, and closed software with software license
fees is the third choice.

A. Teaching Requirements

For the teaching purpose in engineering fundamentals the
software should meet the following four requirements:

1) (MLO) Minimum-Learning-Offset
a) To fulfill (MLO) the software should narrow the need

to learn a modeling language to the absolute minimum.
b) To fulfill (MLO) the user should get along with as

few knowledge as possible about numerics or the
processing of the model in the software.

2) (VLC) Virtual Laboratory Capacity
a) The software should provide the possibility to train

basic modeling skills in engineering, especially in
distant learning scenarios.

b) The virtual laboratory should contain as much as pos-
sible ready-to-use model components from the domains
of mechanical and electrical engineering as well as the
interdisciplinary mechatronic approach.

c) Under the constraints of (MLO) the virtual laboratory
should provide a maximum of modeling freedom to
allow different solutions and approaches as well as an
experimental experience for the students.

3) (EFS) Exercises Database and Feedback System
a) The software should enable the lecturer to provide

exercises with time dependent states as answers, e.g.
the angle in mechanics or the current in electronics.

b) The software should provide a support for automatic
multi-level feedback.

4) (DIS) Differentiated Instruction
The software should provide a support for differentiated
instruction and assistance depending on the abilities of a
single student.

To make these requirements more transparent we will now
provide two example use cases:

A student receives a problem description from the lecturer,
which may include text, graphics and formulas. The solution
requires a graphical model of the solution or differential
algebraic equation (DAE), see e.g. Cellier, F. E., & Kofman,
E. (2006), chapter 7 [7], describing the solution. An example
for a graphical model might be similar to this Modelica model
of a high-pass-filter system in Fig. 1.

Fig. 1: High-pass filter modeled in OMEdit

A textual answer might just be the corresponding transfer
function. Typically the exercise will include some experiments
like testing the high pass filter with different frequencies. In
this case the answers might be two vectors with values, e.g.
[timevector, outputvoltagesensor1]. Therefore, the feedback
system has to check, if these values are correct or not. Due
to the numerical and platform errors that might occur, some
small errors need to be tolerated.

Now we would like to illustrate requirement (DIS) by a use
case description. Modeling in for example technical mechanics
or physics is a hard task one has to learn. A very rough
description of a typical demand including not many hints
might be:

Consider a pendulum given by a point mass m and
a massless bar of the length l. You can ignore every
aspect concerning friction. Develop and then note
the equations of motion. Compute for every time the
kinetic energy, the potential energy, and their sum.
Test your solution for the case that the pendulum
is deflected about 45◦ from its equilibrium, has a
mass of m = 1kg and a length of l = 0.25m by
simulating your equations. If you are satisfied with
the plots, submit your solution.

It might be a pure text solution. If the student is able to solve
the exercise with just this information he is able to achieve the
best mark for his solution. If this does not work, the student
should be able to ask for different levels of support.

The first level just includes a very basic sketch, the next
adds the fact that there is just one degree of freedom and that
a polar coordinate point of view would be advisable. The next
includes the relevant forces and the last helps splitting them up
etc. The lecturer has to decide, what the effects of this support
might be. Maybe he just wants to see the level of support his
students need, maybe he honors their work with some extra



Fig. 2: Different levels of support

points that decrease with every support level to motivate them
to solve it without help if possible.

After the student has performed his exercise, he should
transmit it to a central unit that gives him an automated
feedback, whether his solution is correct or not. To do that
the student has to link his variables to reference variable
names given by the lecturer, or the lecturer has to fix the
variable names in his exercise. The central unit compares this
to a reference solution. After that the student automatically
receives a feedback and the result is tracked in an overview of
the lecturer. The lecturer should be able to decide, whether one
should automatically send a sample solution with commentary
or exclusively give a professional feedback in the lesson.

B. Technical Requirements

In these days most classical client-server approaches have
problems because of the firewall rules in the universities and
colleges. Beyond this the staff to maintain software clients is
much narrowed in todays educational institutions. Therefore,
it makes sense to move to a cloud approach with a Software
as Service (SaaS) architecture. The client should be embedded
into a web browser and/or tablet app. Traditional smart phones
are not considered because of the diameter of the display. The
used programming language should make it easy to volunteer
if the project is maintained as OpenSource-Project, to keep
the cost low for the educational institutions. The development
and maintenance cost of the software project itself should be
low. Therefore, one can sum-up the requirements as follows:

1) (Arc) Software as Service (SaaS) architecture.
2) (Acc) Web browser client and/or tablet-app required

corresponding over open port line 80 (http) or 443 (https).
3) (Sim) Teaching requirements (VLC) b) and c) leads to a

multi-physical simulation backplane.
4) (Mod) Considered teaching use cases lead to the need to

allow textual and graphical modeling depending on the
didactic approach.
a) Graphical models via drag & drop should be possible

for as much as possible disciplines under the constraint
given by teaching requirement (MLO).

b) A textual model in the sense of a differential alge-
braic equation, if possible with the option to use if-

statements, is required independent of the engineering
discipline.

5) (Reu) The reuse of existing projects and libraries is
preferable, if they are well established.

C. Related Work and Evaluation of existing solutions and
components

First we will discuss wherever there are working projects
that fulfill most of the given requirements. This is done to
fulfill the requirement (Reu) as much as possible.

We found six software solutions that tend to meet some
of the requirements. Obviously, there are more candidates one
could discuss like MAXIMA, Scilab etc., but most of them are
quite similar to other solutions and so we restricted us to the
narrow group of prototype tools. In the case of MATLAB and
Sage we just discussed their variants with online capability,
SageMathCloud and MATLAB Mobile. Concerning Maple we
took MapleSim, because it comes closer to our requirements
and the same for Mathematica and Wolfram Alpha. MapleSim
and OMEdit in combination with OpenModelica are classical
desktop simulation software. So, they do not meet a very
important requirement (Arc) & (Acc). Furthermore, the Cloud
tools SageMathCloud and Wolfram Alpha fail, when it comes
to the VirtualLabCapacity (VLC), because they mainly support
modeling on a mathematical level which is not compatible
with (MLO). The Modelica-based tools OMWEB, OMEdit,
and MapleSim need a differentiated view concerning (MLO).
On the one hand their graphical modeling approach requires
some knowledge about the processing of the language, but it is
sufficient with some room for improvement in this context. On
the other hand the standardized modeling language, see e.g.
Modelica Association (2014)[8] or Fritzson, P. (2014) [9], is
quite complicated, requires a deeper insight into Modelica and
it processing and focuses more the professional modeling user.

There have been some approaches in academia concerning
this problem as well. For example we could just evaluate
OMWeb from TABLE I as a concept based on the article
Torabzadeh-Tari et al. (2011) [10]. The prototype is no more
available on the web. Otherwise, it might be the project with
the smallest gap to our needs. But because it is discontinued,
it is of little relevance as part of a new solution.

III. A MODELICA BASED VIRTUAL LABORATORY
SOFTWARE

In this section we will now consider a solution for the
identified requirements. Like Torabzadeh-Tari et al. (2011)
[10] we will use Modelica as base technology, but in opposite
to the work of Pang et al. (2013) [11], which concentrates
on Heating, Ventilation and Air Conditioning for the platform
“Learn High Performance Buildings”, we do not go for
additional containers for the model like the functional mockup
unit, see [12].

A. Components of the Software Architecture

To fulfill the requirement concerning virtual laboratory
capacity (VLC) and (Sim) the considered architecture contains



TABLE I: Analysis of existing solutions & components

Solution name Teaching Requirements Technical Requirements License
(MLO) (VCL) (EFS) (DIS) (Arc) (Acc) (Sim) (Mod)

OMWeb - + o - + + + + o
MATLAB Mobile o o o - + + + o -
Wolfram Alpha o - o - + + o o o
SageMathCloud o - o - + + o o o
OMEdit - + o - - - + + +
MapleSim - + o - - - + + -

a Modelica back-end, which leads to the capacity to simulate
a wide field of models. Motivated by the need not to invent
the very expensive wheel of a simulation back-end again,
we now introduce a software architecture that encapsulates
a simulation environment and thus makes a reduction of
complexity for the development and maintenance. Our analysis
of the requirements from Section II leads to the conclusion
to use the open descriptive modeling language Modelica in
conjunction with the free implementation OpenModelica, more
precisely; just the Open Modelica Compiler (OMC).

To meet the technical requirements our approach uses the
OMC directly combined with Java Remote Application Plat-
form (RAP). The benefit of Java RAP is that we provide a GUI
that is independent of browser add-ons and specific browsers.
Beyond this, we can easily re-use the code for desktop
platforms, if an offline client is considered. As shown in Fig. 3
the resulting framework is built of existing software solutions
such as OpenModelica and open source database solutions,
e.g. PostgreSQL. To meet the requirements Exercises Database
and Feedback System (EFS), the architecture provides two
views on the exercise data base, one via the student RAP client
and an additional view for the lecturer to monitor the student
process and add or modify exercises.

Fig. 3: UML Software Architecture

B. Simplified Modelica for the Textual Modeling Student
Client

To fulfill the Minimum-Learning-Offset (MLO) requirement
a direct integration of pure Modelica is not advisable. As de-
scribed in Frochte, J., (2011) the interpretation of the Modelica
standard is not that simple even for Modelica simulation back-
ends. We will take up the idea of a kind of simple Modelica
from Frochte, J., (2011) [13] and develop it further for the
didactical purpose. A direct solution of the pendulum example
from above would lead to the following Modelica model:

model Pendulum
type Velocity = Real(final quantity = "Velocity",

final unit = "m/s");
type Acceleration = Real(final quantity =

"Acceleration", final unit = "m/s2");
type Length = Real(final quantity = "Length",

final unit = "m");
type Mass = Real(quantity = "Mass",

final unit = "kg", min = 0);
type Angle = Real(final quantity = "Angle",

final unit = "rad",
displayUnit = "deg");

type AngularVelocity = Real(final quantity =
"AngularVelocity", final unit = "rad/s");

type Energy = Real(final quantity = "Energy",
final unit = "J");

constant Real pi = 2 * Modelica.Math.asin(1.0);
constant Acceleration g = 9.81;
parameter Length l = 0.25;
parameter Mass m = 1;
Angle alpha(start = pi / 4);
AngularVelocity w(start = 0);
Energy Epot, Ekin, S;

equation
der(alpha) = w;
m * l * der(w) = -m * g * sin(alpha);
Ekin = m / 2 * (l * w) ˆ 2;
Epot = m * g * l * (1 - cos(alpha));
S = Epot + Ekin;

end Pendulum;

This is a simple model, but one sees that this approach would
violate (MLO). To fulfill (MLO) and (Mod) our architecture
approach considers a guided textual model editor, layout
shown in Fig. 4, and a graphical modeling interface, screen-
shot of the prototype is shown in Fig. 5.

We will deal with the issues regarding the graphical model-
ing interface for our didactic approach later on and concentrate
here on the text editor.

As Fig. 4 shows we suggest to use a Modelica style
modeling concerning the equations, see e.g. [9]. In contrast



Fig. 4: Layout of the Text Student Client

to assignment statement, known e.g. from Java or C, such as

der(w) := −g/l · sin(alpha);

where the left-hand side of the statement is assigned to the
value calculated on the right-hand side, Modelica just uses
equations in the mathematical sense; both sides are equal –
no more, no less. There the line

m · l · der(w) = −m · g · sin(alpha)

in the Modelica listing as well as in Fig. 4 is a legal way to
express the relationship. Beyond this, using here the Modelica
standard makes it easier to develop and maintain the code
generator, because it just has to add some glue code to the
information from the editor to achieve a legal Modelica model
in the sense of the presented listing, which is passed through
the Open Modelica Compiler. The output is an executable,
whose behavior can be modified. It generates the simulation
results on the server; these can visualized by the RAP Client.
The layout of the Exercise Editor shows how Differentiated
Instruction (DIS) should be fulfilled. If the students request
“more support”, the sketch in the exercise description might
change or one can automatically add values, parameters or
their units.

To use the declarative approach instead of assignment
statements will make it easier for engineering students. It leads

to more degrees of freedom for the modeling process and less
rewriting of terms.

Each equation, variable and parameter has to be added one
by one. A button adds a new row to the table. The effect is,
that the student is much more guided compared to an open text
editor. The tables remind him to think about units and whether
a variable is a state and needs an initial value. Furthermore,
students are able to use the “Unit Check” button to let the
system check the resulting units in the equation section. This
function provides a first hint, if the equations are reasonable.

Modeling with under- or overdetermined systems is not
supported. Therefore, our approach makes it easy for the
student to check, if the number of variables corresponds to
the number of equations.

C. The Graphical Modeling Student Client and Approaches
for Further Assistance

While the textual exercise allows a wide field of modeling
on the base of ordinary differential equations (ODE) and
differential algebraic equations (DAE), it is limited to a math-
ematical modeling level. For teaching purpose it is desirable
to have the option to model on a physical level as well. In
this context physical modeling means, that some fundamental
building blocks from different domains are provided, which
can be combined into models of physical components, e.g.
electric motors. As a base to achieve this functionality we use
the free Modelica Standard Library. The version 3.2.1 from
Aug. 2013 contains about 1360 models and blocks from very
different domains including mechanical, electrical, thermal,
fluid and control systems.

This unstinting amount of modeling components is desirable
for professional simulation, but not for teaching. Therefore, we
suggest the possibility to restrict domains and sub-domains by
the exercise editor.

The prototype of our software shown in Fig. 5 right now
supports analog electrical components and heading forward
1D mechanics with the possibility to combine both.

These modeling approaches lead to some problems how to
deal with errors in the model. To illustrate the problem let
us assume, that the student has forgotten to attach the ground
to the circuit model. In this case the Modelica compiler or
OMEdit just return the error message:

Symbolic Error When solving linear
system [..] which means system is
singular for variable capacitor1.n.i.

The localization and handling of such problems is still open
and has been the subject of various publications, see e.g. [14].
In our case with a user, who is restricted to provided model
blocks without the possibility to design new ones, this problem
is limited. We suggest to include an error analysis in the
graphical editor, which is based on rules and patterns stored
in a data base with a learning assistant system similar to the
one suggested by Burrows, S. et al. (2011) [15]. That such an
approach is even for this less complex scenario reasonable
becomes clear, if one brings to mind, that a model might
consist of different circuits and mechanical components, e.g.



Fig. 5: Graphical Modeling in the Java RAP Prototype

connected by the “Electromotoric force” model component,
that need to be analyzed before generating the Modelica code.

D. The numerical issues

The simulation back-end uses the well-known DASSL al-
gorithm, which solves stiff ODE and DAE up to index 1, see
[16]. So it is quite close to a black box solution for the user.
Nevertheless, it is impossible to provide a full black box.

Fig. 6 is the result a student would get, if he plots the output
of the model shown in Fig. 4, respectively in the listing above.
This plot seems perfectly alright, but if the student just selects
the sum of the energies and uses an auto-focus for the y-axis,
he would get the plot displayed in Fig. 7.

The latter plot may induce some questions, because it seems
that very slowly the energy in this system rises, which is
obviously impossible from a physical point of view. A lot of
aspects concerning the numerical back-end can be automatized
using very robust methods or additional learning techniques
as discussed e.g. in Burrows, S. et al. (2013) [17]. But at the
end it is up to the lecturer to provide some information, if
necessary, about numerical stability and numerical damping;
because these effects are always present.

IV. CONCLUSION AND FUTURE PROSPECTS

The question of whether and how to use simulation for
engineering education has caused some debate under faculty
members. In this paper, we outlined the benefits of a web and
simulation based virtual lab in engineering education as well
as the requirements towards it. The contribution of our work
relates to different aspects. We provide a requirements analysis
of a simulation based E-Learning software. We stressed the

point of a didactic approach for a system with differentiated
exercise instructions that the student may choose from. For
these and other requirements we give a description of a
software architecture based on freely available open source
software with a high level of software reuse. Beyond this, for
a proof of concept we developed a prototype containing the
Graphical Editor, the Modelica Writer and a simple plotter up
to now.

A lot of further work concerning development needs to be
done, as for example improving the Graphical Editor or adding
the Textual Editor to our prototype. From a research point of
view the analysis of graphical models to provide the user with
a detailed feedback about modeling errors is most interesting
and will be our next step.

ACKNOWLEDGMENT

The project web page is located under http://webmodelica.
cvh-server.de. We gratefully acknowledge Herbert Schmidt
and Stefan Breuer for their valuable suggestions and discus-
sions. The authors would like to thank Benedikt Wildenhain
and Julian Beran for their support concerning the administra-
tion and set-up of the underlying server software.

REFERENCES

[1] A. Grigorov, A. Angelov, E. Detcheva, and P. S. Varbanov, “Web
technologies for interactive graphical e-learning tools in engineering
education,” Chem Eng Trans, vol. 29, pp. 1597–1602, 2012. 1

[2] B. Stein, C. D., and H. M., “Enriching engineering education in fluidics,”
in Proc. of the International Conference on Simulation and Multimedia
in Engineering Education , San Diego, California. The Society for
Computer Simulation International SCS, 1998, pp. 2823–2829. 1

http://webmodelica.cvh-server.de
http://webmodelica.cvh-server.de


time [s]
0 1 2 3 4 5 6 7 8 9 10

en
er

gy
 [J

]

0

0.2

0.4

0.6

0.8

1

1.2

Potential + Kinetic Energy
Kinetic energy
Potential energy

Fig. 6: Results for the energies from the sample exercise

Fig. 7: Detailed view on the results for the sum of the energies

[3] A. S. S. GmbH, FluidSIM 5 Users Guide, Festo Didactic GmbH & Co
and Art Systems Software GmbH, Paderborn, Germany, 2015. [Online].
Available: http://www.festo-didactic.com/int-en/services/printed-media/
manuals/ 1

[4] B. Furht and A. Escalante, Handbook of Cloud Computing. Springer,
2010. 1

[5] L. Galligan, C. Hobohm, and B. Loch, “Tablet technology to facilitate
improved interaction and communication with students studying mathe-
matics at a distance,” Journal of Computers in Mathematics and Science
Teaching, vol. 31, no. 4, pp. 363–385, 2012. 1

[6] L. Abeysekera and P. Dawson, “Motivation and cognitive load in the
flipped classroom: definition, rationale and a call for research,” Higher
Education Research & Development, vol. 34, no. 1, pp. 1–14, 2014. 2

[7] F. E. Cellier and E. Kofman, Continuous system simulation. Springer
New York, 2006, vol. 1. 2

[8] Modelica - A Unified Object-Oriented Language for Systems, Modelica

Association, Linkping, Sweden, 2014, modeling Language Specification
Version 3.3 Rev. 1. [Online]. Available: www.modelica.org/documents/
3

[9] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3. John Wiley & Sons, 2014. 3, 4

[10] M. Torabzadeh-Tari, Z. M. Hossain, P. Fritzson, and T. Richter,
“Omweb–virtual web-based remote laboratory for modelica in engi-
neering courses,” in Proceedings 8th Modelica Conference, Dresden,
Germany, 2011. 3

[11] X. Pang, R. Dye, T. S. Nouidui, M. Wetter, and J. J. Deringer,
“Linking interactive modelica simulations to html5 using the functional
mockup interface for the learnhpb platform,” in Proc. of the 13th IBPSA
Conference, Chambery, France, 2013, pp. 2823–2829. 3

[12] Functional Mock-up Interface for Model Exchange and Co-Simulation,
Modelica Association Project FMI, Linkping, Sweden, 7 2014. [Online].
Available: https://www.fmi-standard.org/downloads 3

http://www.festo-didactic.com/int-en/services/printed-media/manuals/
http://www.festo-didactic.com/int-en/services/printed-media/manuals/
www.modelica.org/documents/
https://www.fmi-standard.org/downloads


[13] J. Frochte, “Modelica simulator compatibility-today and in future,”
ser. Linköping Electronic Conference Proceedings, vol. 63. Desden:
Linköping University Electronic Press, 2011, pp. 812–818. 4

[14] P. Bunus and P. Fritzson, “Methods for structural analysis and debugging
of modelica models,” in Proceedings of the 2nd International Modelica
Conference, vol. 10, 2002, pp. 157–165. 5

[15] S. Burrows, B. Stein, J. Frochte, D. Wiesner, and K. Müller, “Simulation
data mining for supporting bridge design,” in Proceedings of the 9th
Australasian Data Mining Conference, CRPIT, vol. 121, 2011, pp. 163–
170. 5

[16] L. R. Petzold et al., “A description of dassl: A differential/algebraic
system solver,” in Proc. IMACS World Congress, 1982, pp. 430–432. 6

[17] S. Burrows, J. Frochte, M. Völske, A. B. Martnez Torres, and B. Stein,
“Learning overlap optimization for domain decomposition methods,” in
Advances in Knowledge Discovery and Data Mining, ser. Lecture Notes
in Computer Science, J. Pei, V. Tseng, L. Cao, H. Motoda, and G. Xu,
Eds. Springer Berlin Heidelberg, 2013, vol. 7818, pp. 438–449. 6


	Introduction
	Requirements Analysis and Related Work
	Teaching Requirements
	Technical Requirements
	Related Work and Evaluation of existing solutions and components

	A Modelica Based Virtual Laboratory Software
	Components of the Software Architecture
	Simplified Modelica for the Textual Modeling Student Client
	The Graphical Modeling Student Client and Approaches for Further Assistance
	The numerical issues

	Conclusion and Future Prospects
	References

