
A Learning Approach for Optimizing Robot
Behavior Selection Algorithm

Basile Tousside, Janis Mohr, Marco Schmidt and Jörg Frochte

Bochum University of Applied Science, 42579 Heiligenhaus, Germany,
{basile.tousside, janis.mohr, marco.schmidt, joerg.frochte}@hs-bochum.de

Abstract. Algorithms are the heart of each robotics system. A specific
class of algorithm embedded in robotics systems is the so-called behav-
ior – or action – selection algorithm. These algorithms select an action a
robot should take, when performing a specific task. The action selection
is determined by the parameters of the algorithm. However, manually
choosing a proper configuration within the high-dimensional parameter
space of the behavior selection algorithm is a non-trivial and demanding
task. In this paper, we show how this problem can be addressed with
supervised learning techniques. Our method starts by learning the al-
gorithm behavior from the parameter space according to environment
features, then bootstrap itself into a more robust framework capable of
self-adjusting robot parameters in real-time. We demonstrate our concept
on a set of examples, including simulations and real world experiments.

Keywords: Robot learning · Behavior selection · Parameter optimiza-
tion

1 Introduction

Modern robots are nowadays empowered with more and more behavior selection
algorithms (BSA) [6, 15]. A behavior is an action a robot can take in response
to objectives or sensor inputs. These behaviors might be either the algorithm
of interest or a component of an algorithm with a larger scope. A behavior
selection algorithm therefore selects appropriate behaviors or actions for a robot
to perform. It is used in various applications to allow robots to autonomously
perform diverse tasks like vision, navigation or grasping [8, 13].

Robot behavior selection algorithms often involve many parameters that have
a significant impact on the algorithms efficiency. In this setting, a key challenge
concerns the tuning of those parameters. Consider for example a parametric path
planning algorithm operating in a dynamic environment. A parameter configu-
ration that avoids a moving human is not guaranteed (without further tuning)
to be effective at avoiding other dynamic obstacles like a random moving cat for
example. The parameters tuning of behavior selection algorithms is sometimes
delegated to a human and accomplished through a process of trial-and-error [1].
Unfortunately, manual tuning of robot parameters is not only time consuming,
it also tends to make the algorithms vulnerable. As a result, the question of how



2 Basile Tousside et al.

Supervised
model

Behavior
selection
algorithm

Database

Robot Environment

parameter

data
generation

training

selected
behavior

behavior
needed

action

sensors

Fig. 1: Our strategy for implementing a learnable module, which gives a robot
the ability to self-adjust its parameters while performing a specific task. The
dashed lines represent connections taking place exclusively at the first stage of
our method, which focus on learning the parameters of the BSA w.r.t environ-
ment features.

to optimally select parameters of robot behavior selection algorithms is still an
open problem.

In this paper, we demonstrate that these parameters can be learned from ob-
servation data via supervised learning techniques. This automates the choice of
parameters therefore providing an appealing alternative to the complex manual
tuning. Another significant benefit is that the learning solution will approximate
an optimum in contrast to manual solutions which are often not of the best qual-
ity. Our approach is to build a supervised learner, which learns the parameters
of a behavior selection algorithm – therefore learning the behavior of the be-
havior selection algorithm – from observation data. This supervised learner is
then later used to optimize the parameters of the behavior selection algorithm
for the specifics of the environment. This is schematically illustrated in Figure 1.
Other authors have already approached the problem this way. However, the
learning framework they propose almost always uses specialized techniques such
as salient landmarks [12], language measure [14] or stochastic Petri nets [10]. Our
framework in contrast uses supervised learning technique making it general and
transferable to any other robotics parameter optimization problem. It starts with
a data generation process and bootstraps itself towards a more general frame-
work capable of self-adjusting robot parameters while the robot is performing a
given task. One challenge when using supervised learning technique is the need
of labelled data. Our framework takes this into account by incorporating a data
generation phase, which will be presented in Section 3.6.

In this paper, we focus on the path planning behavior selection problem,
which is a crucial component of each robot navigation framework. When navi-
gating in a dynamic environment, a path planning algorithm – which is a behav-
ior selection algorithm – might be confronted with the issue of which behavior
to adopt with respect to the environment, that is, in order to accurately avoid a



A Learning Approach for Optimizing Robot Behavior Selection Algorithm 3

specific obstacle for example. The behavior the path planning algorithm adopts
is determined by its parameters. The problem can then be rephrased as follows:
Which parameters should be chosen to avoid a certain type of obstacle. Later
in this paper, we will demonstrate how our method is able to solve this problem
by learning from observation data the behavior of the path planning algorithm
when avoiding obstacles.

One problem that can pose serious difficulties to the learning algorithm is
that for some behavior selection algorithm like path planning, searching for the
optimal parameters belongs to the class of the so-called ill-posed problems since
there is not a unique solution. In fact, different paths produced by various config-
urations in the parameter space might not significantly differ in terms of quality.
To overcome the ill-posedness of parameter search, the training data needs to
be filtered and cleaned-up, which is done in a preprocessing step.

Another challenge when applying parameter learning to behavior selection
algorithm is the fact that robotic algorithms are mostly interconnected. Conse-
quently, integrating external factors such as learned parameters in one algorithm
without compromising the functionality of some others is not trivial. This diffi-
culty is well illustrated in our path planning use case. In fact, robot navigation
can mostly be achieved by successfully connecting several key components like
map building, localizers, path planner or range sensors among others. However,
as the number of components increases, their relationships become difficult to
manage. As a side effect, if we learn the behavior of a path planning algorithm,
the problem arises of how to integrate the learned behavior into the navigation
framework without comprising the functionality of the overall framework. To
solve this problem, a framework, which formalizes the navigation system and
its components was required. This will be revisited in Section 3.4. The main
contributions of this paper are as follows:

– Strategy that generates labelled data for a robot behavior selection algorithm
from environment observations.

– Supervised-learning approach for learning parameter (and thus the behavior)
of robot behavior selection algorithms.

– Framework that exploits a supervised learned model to optimally adjusting
robot parameter in real-time.

2 Methodology

We aim at demonstrating how to empower robots with the ability to automati-
cally tweak their parameters, therefore reacting to environment changes. In our
setting, the actions – or behaviors – of the robot are controlled by a behavior
selection algorithm. Therefore, by controlling the behavior selection algorithm
we can indirectly control the robot behavior (see Figure 1). Since behavior se-
lection algorithms are parameter-dependent, they can be controlled via their
parameters. Our method builds on this and can be subdivided into two steps,
first, it focus on learning the parameters of the behavior selection algorithm with
respect to some environment features. Doing so, it somehow learns the behavior



4 Basile Tousside et al.

Algorithm 1: Our method for optimizing parameters of BSA

Input: Deterministic behavior selection algorithm A with parameters P
e.g., parametric path planning algorithm (RRT, APF)

Result: Machine learning model, which improve in real-time the robot
behavior with respect to a specific environment

1 parameterize the environment with some features X ;
2 generate observation data with features X and response P ;
3 train a supervised-learning model M to learn P w.r.t X ;
4 integrate M into the robot framework to which A belong e.g.,

navigation framework ;
5 robot use M to self-adjust its behavior by optimizing P according to

environmental conditions ;

of the behavior selection algorithm according to environmental conditions. In a
second step, the learned model is exploited to optimize in real-time the parame-
ters of the behavior selection algorithms for the specifics of the environment. Let
us illustrate this with a concrete use-case. In a navigation setup, path planning
is a typical behavior selection algorithm. It selects the appropriate behaviors or
actions for a robot to take in response to environment input (such as free space,
obstacles, etc.) gained by robot sensors. Consider an environment including a
static chair and two dynamic obstacles, namely, a deterministic moving human
and a random moving cat. A robot equipped with a parametric path planner
– such as Rapidly-exploring random tree (RRT) [11] or the artificial potential
field (APF) [9] method – is required to navigate that environment while avoiding
obstacles. Thus, when facing an obstacle, the robot – in fact the path planning
algorithm – should decide which behavior (or action) to select. More concretely,
the path planning algorithm, which is here the behavior selection algorithm
should decide which parameter configuration to use. It is difficult to manually
find near-optimal choice of parameter configuration to avoid all three types of
obstacles. In fact, it can be expected that a skilled human will often be able to
do an as good job as machine learning at finding parameters that avoid each
obstacle individually, especially for the chair and the human. But for avoiding
all the obstacles sequentially, machine learning will be of great help for novice
as well as expert users.

Our method for using machine learning to solve such a behavior selection
problem consists of first (i) learning the parameters of the path planning algo-
rithm according to some environment feature such as the obstacles’s behavior.
To do so, we build a labelled data-set, where features are environment charac-
teristics (obstacle type, obstacle speed, etc.) and responses are the parameters
to be learned. This is carried out in a bootstrap process involving an intelligent
grid-search and a compact local search. This is revisited in Section 3.6. Once
the data are collected and preprocessed, regression techniques can be used to
learn path planning parameters corresponding to environment features. How-
ever, as pointed out earlier, parameter learning is often an ill-posed problem,
since different parameter configurations can lead to an equally good result. This



A Learning Approach for Optimizing Robot Behavior Selection Algorithm 5

Fig. 2: Our learning model: Predicted parameters are fed to the robot via the
control system. Input and output dimensions of each layer are shown on the
connections.

is the case for our path planning parameter learning use-case as well as for many
other robotics problems like the inverse kinematic [2]. To tackle such problems
using standard regression technique like a multilayer Perceptron (MLP) or a k-
nearest neighbors (KNN), the labelled data needs to be filtered and cleaned up
as will be presented in the experiments section, otherwise those techniques will
fail at finding good solutions as shown in [4]. Once the data is generated and
preprocessed, they can be fed to an appropriate regression model, which learns
to predict the parameter values the robotics algorithm should use in real-time.

The second step of our method for solving the path planning behavior selec-
tion problem is to (ii) deploy the learned model in the navigation framework,
in order to optimize the path planning parameter - therefore controlling and
improving the path planning behavior - regarding environment features. Our
general framework for solving the BSA parameters optimization problem is sum-
marized in algorithm 1. This framework applied to the path planning behavior
selection problem as described above has shown positive results, which will be
presented in Section 4.

We now turn our attention to the regression model implemented to learn the
parameters setting in our path planning use-case. It is a multilayer Perceptron
with parameters θ, comprising L = 6 layers (see Figure 2). Each hidden layer im-
plements a non-linear transformation Hl(.), where l indexes the layer. We define
the transformation Hl(.) as a composite function of two consecutive operations:
batch normalization (BN) [7], followed by a rectified linear unit (ReLU) [5].

3 Experimental Setup

Our concept as described above is experimented at the path planning behavior
selection problem, which is a fundamental challenge in robotics. We simulate an
environment in Gazebo including as obstacle: a static chair, a human moving in
a deterministic manner and a cat moving randomly. In this environment, a robot
is given the task to reach a goal position without hitting obstacles. The rest of
this section is organized as follows: it starts by formalizing the path planning
problem we aim to solve, this is followed by a description of the environment
in which the robot is navigating. Furthermore, our navigation framework and
navigation evaluation measure is presented. Finally, attention is paid to data
generation and supervised model training methodology.



6 Basile Tousside et al.

Fig. 3: Setup for experiments in simulation.

3.1 Problem formulation

Consider a mobile robot navigating in an unknown environment, we denote by
C ⊂ Rq the complete configuration space of the robot, where q ∈ N is the
dimension of the configuration space. Cfree and Cobs = C\Cfree denote respectively
the valid configuration in the planning space and the obstacle space consisting of
robot state obstructed by collisions with either the obstacles or the environment.
The robot navigates from a start state qs ∈ Cfree with the task of reaching a goal
state qg ∈ Cfree. To execute this task, the robot plans a path ξqs→qg

using a path
planning algorithm – a behavior selection algorithm –, which can be represented
by a function F , that solves the following motion planning problem:

ξqs→qg
= F(qs,qg, C)

s.t. ξqs→qg
= {q1, . . . ,qm}

and ∀ qi ∈ ξqs→qg
,qi ∈ Cfree

(1)

The output of the path planning is therefore a sequence of states qi ∈ Cfree,
which allow the robot to navigate without hitting obstacles. A path ξqs→qg

is
said to be successful if ξqs→qg

⊂ Cfree from the beginning to the end of the driv-
ing task. As already mentioned, path planning is an ill-posed problem, meaning
that there is not a unique solution to avoid a chair for example. Our evaluation
measure for comparing path solutions will be presented in Section 3.5. Further-
more, we denote by Υξ the execution cost of a path ξqs→qg

. For a straight line
between state qa and qb the cost of the path ξqa→qb

is given by the distance:
Υξ(qa,qb) =‖ qa − qb ‖. Since a path is the summation of consecutive small
straight movements, the overall execution cost of a path ξqs→qg

= {q1, . . . ,qm}
is then formalized as:

Υ (ξqs→qg
) =

m−1∑
i=1

Υξ(qi,qi+1) (2)

The path planning algorithm F can be configured by a set of parameter
P = {p1, . . . , pn} ∈ P, where P is the parameter space and pi ∈ R. Let J denote
the cost metrics defined for F when using a parameter set P in an environment



A Learning Approach for Optimizing Robot Behavior Selection Algorithm 7

configuration C. Our supervised learning model aims to find in a dynamic en-
vironment, for a given robot state and configuration space, a parameter set P ∗

that drives the robot to the goal without collision while optimizing J .

P ∗ = arg min
p∈P

J(F(P), Cobs) (3)

Whenever an obstacle (detected by the depth camera mounted on the robot)
is encountered on a currently followed path ξqs→qg

, our method solves (3) finding
the optimal parameter set P ∗ for the new configuration space that moves the
robot collision-free towards the goal state qg.

3.2 Environment Representation

The robot is required to navigate to randomly selected target positions on an
12m x 12m, 2D map of the environment. In simulation, the environment consists
of a corridor with variable width and curvature (see Figure 3). The 2D map of
the environment is updated for each simulation as the corridor dimension and
curvature change. The following subsections address each of the environment
component individually.

Corridor. The navigation environment consists of a corridor of width w and
length l. The corridor is made of 4 walls, which are pairwise parallel as shown
in Figure 3. Wall 1 and 2 (the 2 top walls) have an angle α with the vertical
axis, whereas walls 3 and 4 (the bottom walls) have an angle β with the same
(vertical) axis. Note that the feature w,α and β are variable parameters. This
allows the corridor to be modeled as: ζ = f(w,α, β).

Obstacle. Inside the corridor, we modeled three obstacle typesOt = {O1, O2, O3}
consisting of a static chair, a human character moving in a deterministic manner
and a cat moving randomly (see Figure 3). During the simulation, each obstacle
(except the chair, which is static) move at a constant speed Os, where Os is a
variable parameter. Note that there is only one obstacle per simulation, that is,
the cat and the human for example never appear together.

World. Joining the two later sections together, we can formally define a simu-
lated world W as: W = f(w,α, β,Ot, Os).

3.3 Robotic platform

A kobuki based Turtlebot is used as robotic platform in simulation as well as
in real world. It is equipped with a depth camera sensor mounted on it, which
collects depth images in a 5 meter range, therefore allowing to sense local obsta-
cles. The computing center of our real Turtlebot is an Intel NUC5PPYH with
8Gb RAM running Ubuntu 16.04 and the Robot Operating System (ROS).



8 Basile Tousside et al.

3.4 Navigation Framework

Our navigation framework builds on the ROS navigation stack, which provides
a two level motion planner consisting of a global planner and a local planner. At
a time t, the global planner produces a global path (around obstacles) from the
current state qc to the goal state qg based on the current state configuration
Cfree and Cobs. The local planner acts as a controller with the role of following
the global path as close as possible. The ROS navigation stack is modified to
use our implementation of a path planning behavior selection algorithm (RRT)
as global planner. The dynamic window approach (DWA) [3] is used as default
local planner in the ROS navigation stack, we do not modify this behavior. Our
navigation framework therefore consists of a behavior selection algorithm (BSA)
– with parameter p1, . . . , pn –, which plans a global path around obstacles and
a local planner, which follows the planned path. If the local planner encounters
an obstacle (detected by the depth camera) on the global path it is following, it
aborts the process and asks the BSA for a new behavior to adopt, that is a new
global path to follow. The BSA then delivers a new path (if one exists) regarding
the new configuration space C. This process is illustrated in Figure 4.

Fig. 4: Our navigation framework.

3.5 Evaluation Metric

Consider two parameter sets P1 and P2 of the BSA both successfully avoiding an
obstacle in a navigation scenario. An important question is which of P1 and P2

produces the best planning strategy. To tackle this question we define the robot
collision as metric, meaning that we expect the robot to reach the goal without
colliding with obstacles. More concretely, during an entire simulation run, we
compute the smallest distance dmin between the robot and the obstacle. A too
small dmin implies that the avoidance maneuver was close to fail. A big dmin

means that the robot has avoided the obstacle with a safer margin. On the other
side, another requirement is that the avoidance maneuver should not move the
robot too far from the shortest path leading to the goal, this is the straight line
connecting start state qs and goal state qg assuming all obstacles are ignored.



A Learning Approach for Optimizing Robot Behavior Selection Algorithm 9

F F
qstart qgoal

obstacle

Avoidance trajectories

dmin

dcritical

Fig. 5: Illustration of our metric. The red path avoids the obstacle with a safer
margin but deviate too far from the shortest path between robot and goal states.
The blue path produces the smallest dmin but lies inside the critical region. The
green path is the one which exhibits a best trade-off between lp and dmin. It
produces a dmin not deviating too much from the shortest path while yielding
at the same time a safe margin to the obstacle.

This later requirement implies that a big dmin is also not a good choice since it
deviates the robot trajectory too far from the shortest path. Denoting the length
of the path produced by the avoidance maneuver as lp, the best trajectory is
therefore the one producing a path that minimizes lp while maximizing dmin.
This trade-off between lp and dmin is solved by introducing a critical distance
dcritical, which acts as a threshold distance between the obstacle and the robot.
Figure 5 illustrates the robot collision metric as described above. The red, blue
and green paths show 3 different avoidance trajectories for the same environment
and configuration space Cfree, Cobs. The n best avoidance trajectories, are the
one with the smallest dmin ∈ D in ascending order, such that

D = {dxmin ≥ dcritical ≥ 0 , x ∈W} (4)

3.6 Data Generation

We aim at generating labelled data for the path planning BSA. The data-set
consists of environment features and BSA parameters, which are the labels. To
generate the data, we ran a lot of simulations, which were distributed on a
computer cluster with 5 nodes. Each node consisted of a PC with Intel i7−2600
CPU processor clocked at 2.4 GHz, which is able to run the simulation in real
time. In each simulation run, the robot is required to navigate from a start
position qs to a goal position qg whereby the Euclidean distance between start
and goal is typically 8 meter. Each simulation run takes around 40 seconds and
returns a Boolean value signifying whether or not the simulation was successful.
That is if the robot reached the goal state within the 40 seconds and the smallest
distance between the robot and the obstacle satisfies (4). Our data generation
strategy consists of three consecutive steps, which will be addressed individually
in the following subsections:



10 Basile Tousside et al.

Initial guess. The first step is searching for potentially good parameter settings
for the path planning BSA by running a quick random search using wide ranges
of parameter values.

Selective grid search. The second step performs a search using a smaller range
of values centered on the best ones found during the first step. Doing so, we
zoom in on a good set of planner parameters. The process is as follows: For some
random generated world W, we try a grid of 90 BSA parameter configurations
and choose the 3 best as the one with the smallest dmin, whereby dmin satisfies (4).

Local search. The third step is a local regressor, which allows to automatically
generate far more data out of the previously created database. First, we train a k-
nearest neighbors multi-output regressor on the data resulting from the previous
step. In a second stage, the trained KNN is used to predict the parameters setting
Pi that might work well for a previously unseen world Wi. Once a parameter set
producing a path satisfying (4) is found, the pair (Wi, Pi) is added to a database.

3.7 Supervised model training

We learn the parameters of the path planning BSA using the network presented
in Figure 2. The training objective consists of two parts. The first part minimizes
the mean-squared-error (MSE) loss between predicted parameters P̂i and true
parameter Pi, where i indexes the training instance. The second part accounts at
each training instance for the cost Υi(ξqs→qg

) of the path ξqs→qg
produced by the

parameters P̂i. This cost has been defined in (2) and is weighted in our training
objective by a parameter λ, which acts as a regularization hyper-parameter. The
overall loss function of the network is then computed as:

L(θ) =
1

n ·m

n∑
j=1

m∑
i=1

(P ji − P̂
j
i )2 +

λ

m

m∑
i=1

(
1−

Υi(ξqs→qg
)

Ῡ

)2

(5)

where, m is the batch size, n the number of neurons in the output layer – that
is the number of parameters to predict –, and Ῡ the length of the straight line
connecting start and goal state.

4 Experimental results

We evaluate our methodology at two levels. In a first level, we want to rate the
impact of using supervised learning to adjust in real-time the parameters of a
robot behavior selection algorithm. For this purpose, a human solution is used as
baseline. We compare the solution of a human expert to the supervised learning
solution at finding parameters of the path planning BSA able to navigate the
robot in the environment described in 3.2. Remember that this environment
embeds three obstacle types that should be avoided: A static chair, a human
moving in a deterministic manner and a random moving cat. We ran 3 type of
simulations, each consisting at avoiding one of the three obstacles. Table 1 shows



A Learning Approach for Optimizing Robot Behavior Selection Algorithm 11

that for static obstacles (here the chair), an expert human is almost as good as
a supervised learning solution at providing the BSA with parameters that avoid
the obstacle. For dynamic obstacles, however, the supervised learning solution
dramatically improves the robots ability to safely navigate that environment.
This is due to the fact that the supervised learning solution has learned to
adapt the robot behavior - via the BSA parameters - to environment features
such as the obstacle type, speed or trajectory.

Table 1: Baseline expert human vs supervised learning at avoiding obstacles

Obstacles type
% of success out of 1000 simulations

human expert supervised learning

chair 98 % 100 %
human 56 % 96 %

cat 44 % 92 %

The second level of our methodology evaluation consists of comparing our
multilayer Perceptron (MLP) learning approaches to two standard regression
techniques, namely, a k-nearest neighbors with k = 5 and a random forest with
800 decision tree estimators. We choose those two regression techniques as they
have little hyperparameters and are known to perform well on structured data
and multi-regression problems. Table 2 shows that our MLP works well and is
stable compared to standard regression techniques.

Table 2: Result of comparing our MLP to two supervised learning methods, when
predicting parameters of BSA for the same environment configuration.

Regressor
% of success out of 1000 simulations
chair human cat

Our MLP 100 % 96 % 92 %
kNN (k=5) 99 % 95 % 79 %

random forest (800 estimators) 100 % 93 % 91 %

5 Conclusion

We have presented a method that can learn and optimize the behavior of a
robot behavior selection algorithm via its parameters. The key idea was to build
a supervised learner, which is trained to learn the parameters with respect to
some environment features. The application of this approach to a path planning
problem showed that the method is able to adjust in real-time the parameters of
the algorithm therefore efficiently controlling the robot behavior while perform-
ing the navigation task. Simulations showed great results, however our method
could not be extensively tested in reality due to a lack of real-world training
data. In a prospective future work, we wish to empower our multilayer Percep-
tron with transfer learning techniques in order to forward simulation insight to
reality without the need to generate a large amount of real-world data.



12 Basile Tousside et al.

Acknowledgments

This work was funded by the federal state of North Rhine-Westphalia and the
European Regional Development Fund FKZ: ERFE-040021.

References

1. Bajcsy, A., Losey, D. P., O’Malley, M. K., and Dragan, A. D. Learning
from physical human corrections, one feature at a time. In Proceedings of the
2018 ACM/IEEE International Conference on Human-Robot Interaction (2018),
pp. 141–149.

2. DeMers, D., and Kreutz-Delgado, K. Learning global direct inverse kinemat-
ics. In Advances in Neural Information Processing Systems (1992), pp. 589–595.

3. Fox, D., Burgard, W., and Thrun, S. The dynamic window approach to
collision avoidance. IEEE Robotics & Automation Magazine 4, 1 (1997), 23–33.

4. Frochte, J., and Marsland, S. A learning approach for ill-posed optimisation
problems. In Australasian Conference on Data Mining (2019), Springer, pp. 16–27.

5. Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence
and statistics (2011), pp. 315–323.

6. Huang, Z., and Chen, Y. An improved artificial fish swarm algorithm based on
hybrid behavior selection. International Journal of Control and Automation 6, 5
(2013), 103–116.

7. Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167
(2015).

8. Izumi, K., Habib, M. K., Watanabe, K., and Sato, R. Behavior selection
based navigation and obstacle avoidance approach using visual and ultrasonic sen-
sory information for quadruped robots. International Journal of Advanced Robotic
Systems 5, 4 (2008), 41.

9. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In
Autonomous robot vehicles. Springer, 1986, pp. 396–404.

10. Kim, G., and Chung, W. Navigation behavior selection using generalized stochas-
tic petri nets for a service robot. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C (Applications and Reviews) 37, 4 (2007), 494–503.

11. LaValle, S. M. Rapidly-exploring random trees: A new tool for path planning.
12. Liu, D., Cong, M., Du, Y., and Gao, S. Robot behavior selection using salient

landmarks and object-based attention. In 2013 IEEE International Conference on
Robotics and Biomimetics (ROBIO) (2013), IEEE, pp. 1101–1106.

13. Murphy, T. G., Lyons, D. M., and Hendriks, A. J. Stable grasping with a
multi-fingered robot hand: A behavior-based approach. In Proceedings of 1993
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’93)
(1993), vol. 2, IEEE, pp. 867–874.

14. Wang, X., Ray, A., Lee, P., and Fu, J. Optimal control of robot behavior
using language measure. In Quantitative Measure for Discrete Event Supervisory
Control. Springer, 2005, pp. 157–181.

15. Wang, Y., Li, S., Chen, Q., and Hu, W. Biology inspired robot behavior
selection mechanism: using genetic algorithm. In International Conference on Life
System Modeling and Simulation (2007), Springer, pp. 777–786.


